Cryopreservation of Crassostrea gigas vesicular cells: viability and metabolic activity.
نویسندگان
چکیده
Cryopreservation is widely used for long-term conservation of various tissues, embryos or gametes. However, few studies have described cryopreservation of invertebrate primary cell cultures and more particularly of marine invertebrate somatic cells. This technique would however be of great interest to facilitate the study of various metabolic processes which vary seasonally. The aim of the present study was to develop a protocol for cryopreservation of Crassostrea gigas vesicular cells. Different parameters were adjusted to improve recovery of cells after freezing. The most efficient cryoprotectant agent was a mix of Me(2)SO, glycerol, and ethylene glycol (4% each). The optimal cooling rate was -1 degrees Cmin(-1) down to -70 degrees C before transfer into liquid nitrogen. In these conditions the percentage of viable cells reached 70% of the control. The glucose metabolism of thawed cells was evaluated using radioactive glucose as a tracer. Immediately after thawing, glucose uptake involving membrane transporters was greatly reduced (24% of control) whereas glucose incorporation into glycogen was less affected (68% of control).
منابع مشابه
Non-specific Defensive Factors of the Pacific Oyster Crassostrea gigas against Infection with Marteilioides chungmuensis: A Flow-Cytometric Study
In order to assess changes in the activity of immunecompetency present in Crassostrea gigas infected with Marteilioides chungmuensis (Protozoa), the total hemocyte counts (THC), hemocyte populations, hemocyte viability, and phagocytosis rate were measured in oysters using flow cytometry. THC were increased significantly in oysters infected with M. chungmuensis relative to the healthy appearing ...
متن کاملCellular and Transcriptional Responses of Crassostrea gigas Hemocytes Exposed in Vitro to Brevetoxin (PbTx-2)
Hemocytes mediate a series of immune reactions essential for bivalve survival in the environment, however, the impact of harmful algal species and their associated phycotoxins upon bivalve immune system is under debate. To better understand the possible toxic effects of these toxins, Crassostrea gigas hemocytes were exposed to brevetoxin (PbTx-2). Hemocyte viability, monitored through the neutr...
متن کاملA flow cytometric approach to study intracellular-free Ca2+ in Crassostrea gigas haemocytes.
Bivalve haemocytes are essential in defence mechanisms including phagocytosis. They also produce molecules including hydrolytic enzymes and antimicrobial peptides that contribute to pathogen destruction. Although haemocyte activities have been extensively studied, relatively little is known about the intracellular signalling pathways that are evoked during haemocyte activation and especially th...
متن کاملPhysiological recovery from prolonged ‘starvation’ in larvae of the Pacific oyster Crassostrea gigas
Previous studies of energy metabolism in larvae have described a developmental ‘‘point of no return’’ (PNR), a time by which larvae of planktotrophic marine species must feed in order to survive and grow. This study investigated the effects of long-term food deprivation on developing larvae of the oyster Crassostrea gigas with the goal of providing a biochemical and metabolic description of lar...
متن کاملStudy of atrazine effects on Pacific oyster, Crassostrea gigas, haemocytes.
Shellfish farming is an important economic activity around the world. This activity often takes place in areas subjected to various recurring pollutions. The recrudescent use of herbicides in agriculture including atrazine implies pollutant transfer towards aquatic environment in estuarine areas. Harmful effects of such substances on animals in marine environment, particularly on cultured bival...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cryobiology
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2006